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ABSTRACT 

We study two types of vacuum wave-functions for the 

su (2) lattice gauge theory in 3+1 dimensions. One trial 

function is based on a mean-plaquette ansats which is 

analysed by employing a 3-dimensional Monte Carlo program 

for an Euclidean SU(2) gauge theory. The second is based on 

a mean-link ansats which is projected onto its 

gauge-invariant component. Its numerical analysis is more 

complicated and involves a chiral Su(2) problem with an 

heat-kernel action in 3-dimensions. The results of both 

trial functions lead to similar ground-state energies. 
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1. INTRODUCTION 

We study here two types of vacuum wave-functions for 

the SU (2) gauge theory in 3+1 dimensions. Both types of 

wave functions rely on a mean-field ansatz, however one uses 

a mean-plaquette description whereas the other employs a 

mean-link method. 

The SU(2) problem is defined by the Hamiltonian Of 

Kogut and Susskindl on a 3-dimensional lattice in space. By 

using a specific ansatz for the ground-state wave-function 

one reduces the problem to 3-dimensional Euclidean 

statistical-mechanics. The norm of the wave-function 

becomes a partition-function and the vacuum energy turns 

into a certain thermodynamic quantity which may be evaluated 

by numerical methods. 

Such an approach has been applied to the SU(2) problem 

in 2+1 dimensions2 where the mean-plaguette ansatz allows 

for an analytic solution. This is based on the fact that on 

a 2-dimensional spatial lattice one may transform the 

original link variables into independent plaguette 

variables. This is no longer true in 3-dimensions. 

Therefore the mean-plaguette ansats which we discuss in 

Section 2 necessitates a Monte-Carlo calculation 3,4 of the 

3-dimensional SU(2) gauge problem. 

The second ansatz which we use is the gauge-invariant 

mean-link method of Ref. 5. Projecting a wave-function of 

the link variables onto its gauge-invariant sector leads to 



-3- FERMILAB-Pub-83/61-THY 

statistical mechanics of the gauge-variables defined on the 

lattice vertices. The original type of ansatz for the link 

wave-function fixes the kernel of the partition function. 

In our case it is the heat-kernel action for chiral SU(2) in 

3-dimensions, which we discuss in Appendix A. Its physical 

consequences for our problem as well as the comparison 

between this ansatz and the previous one are discussed in 

Section 3. The group-theory that we need for our 

calculation is developed in Appendix B. 

The results are summarized in Section 4 where we 

discuss also possible modifications which may improve the 

structure of the wave function in the weak-coupling regime 

by introducing long range correlations into it. 

2. MEAN-PLAQUETTE METHOD 

The SU(2) Hamiltonian is chosen to be 1 

/f= g; q + f2 yT+ $1 

where the basic variable is the SU(2) group-element (2x2 

matrix) associated with each link, U,, and U 
P 

is its 

path-ordered product along a plaguette: Up=UlU2U;441. %a. is 

the color-electric field which is a vector in color-space 

and a component (in the L-direction) of a vector in real 

space. It obeys the relation 
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[ELR, u&l = Fqu, $el (2) 

The simplest gauge-invariant ansatz for the vacuum, is 

given by 

y = 2‘“4 5 ii Up’ 

The normalization factor 2 is the partition function of a 

3-dimensional Su(2) problem based on the Wilson-action: 

2 i = sye B=-v f 
Following Arisue et al. 2 we note that the energy density can 

now be written as 

LF Gj=,p= 7 w = [ yp - ;g (J$ up>, + i2 (5) 
f 

where 
NP is 

the number of plaquettes of the three 

dimensional lattice. <H> 
$ 

in Eq. (5) denotes the 

quantum-mechanical average of H in the state JI defined by 

Eq. (3), while <tr Up>S stands for the statistical average 

of tr U P 
using 2 of Eq. (4). The latter can be calculated 

numerically by Monte-Carlo techniques and thus one can 

evaluate &g2,B). Requiring 
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a c c(9’:p = o 
Qk 

we find the parameter B(g2) which minimizes the vacuum 

energy. 

The SU(2) problem in 3-dimensions, as defined by 

Eq. (4), was studied by d'Hoker3 who found the high-B 

behaviour 

Inserting it into Eq. (5) we obtain the weak-coupling limit 

of our ansatz 

E-E GS ‘--VI3 d c-8) 

In the other extreme limit, the strong coupling where 

g+m and B-to, one may use for comparison the single-plaquette 

problem which yields 

(h VP> = !=$y -p 

and therefore 

p=$ -- E- $ + 

a? 
i 
5+ 0 

4s -3-Q 
J 

(9) 

Cl 01 
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We have evaluated t(g2,B) by using the Monte-Carlo 

program developed by M. Creutz4 for the SU(2) lattice gauge 

theory. We have used an 83 lattice and changed B in steps 

of 0.1. In order to obtain stable results it was sufficient 

to use 40 iterations for each value of 6; results remained 

the same (within 0.5%) after 300 iterations. In Fig. lwe 

display the final results for E after the minimization 

procedure was carried out. For comparison we show the 

results for a single plaquette problem [i.e. using Fq. (9) 

for <tr Up>] and we see that the departure between the two 

becomes appreciable below g2<2.4. 

The ansatz that we have used here for $, Fq. (3), is of 

course best suited for the strong coupling region. The 

analysis of the SU(2) model in 2+1 dimensions2 has shown 

that this ansatz is very stable: adding to the exponent 

terms which involve two neighboring plaquettes one finds 

that they acquire minute coefficients. It is however clear 

that the ansatz does not display the correct physics in the 

weak coupling region. It is in fact too strongly confining. 

Calculating a spatial Wilson-loop one would be led to the 

same result as that of a Wilson-loop in the 3-dimensional 

theory of Eq. (4) with the relation (8) between B and g2 

near g-+0. As a result it will vanish like a power as g+O 

whereas one would expect it to vanish like an essential 

singularity at this point in 3+1 dimensions. The true 

vacuum will therefore require a more complicated expression 

in the weak coupling region. We will discuss possible 
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modifications in Section 5. 

3. MEAN LINK METHOD 

Our second mean-field method' is based on the use of a 

link wave function $(Ua). Taking the product over all links 

xi = 7-r + ( lJ4 ) x 
we obtain a state which is not gauge invariant. Projecting 

this state onto its gauge invariant part, P$, we obtain a 

trial wave function for the vacuum. Since PL=P its norm is 

given by 

t= IAuL y*h’ = [JGL T/d? +*Cu,)Cp($‘ut $+, 
(12) 

HL HL 

Gi are the group elements which are introduced at every 

vertex of the lattice. The projection operation involves 

the rotation of every link element U, by the two Gi which 

are located at its two end points i=a,. 

The wave function we use5 is 

c$ = z c$PY (2j+,)T!j(u,) 
j 

which is the analog of a discrete-Gaussian, or the Villain 

approximation, in the U(1) theory. 
'j 

is the character of 

the j-th representation of SU(2). Inserting it into 

Eq. (12) we find 
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Our choice of I$ led to K which is of the same nature. One 

important property of this K is that it is a positive 

definite function. Therefore 2 defines a partition function 

also known as the heat-kernel problem. 6 This name stems from 

the fact that K obeys the diffusion equation 

aK ' 2°K 
*=k' 

where g2 is the Laplace-Beltrami operator on the group. 

2 of Eq. (14) is a global-symmetry problem and 

therefore has a completely different behaviour fran the 

local-symmetry problem of Eq. (4). The partition function 

of the previous section defined a problem with no phase 

transition, whereas the one used here has a continuous phase 

transition. Although this transition is very smooth--as 

exhibited in Appendix A--it causes a problem because it 

introduces a spurious phase transition into our analysis. 

In order to obtain B(g) we have to calculate the 

expectation value of H. This is done by representing every 

term which appears in H as an operator in the statistical 

mechanics of 2. It is straightforward to obtain 
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<~Ipw 

(ql ?I*) 
= (4g$ &, K ($7 4,)) 

z 

which is a consequence of Eq. (15). The expectation value 

of tr Up=xl,2 (Up) is more complicated. It involves 

integrals of the form (see Fig. 2 for notation). 

d u, . I Op Ur ~, iU, ) XJ: (‘L ) Xj: (‘;3 ) XJI (‘, 1 ~~~ (q “’ “; “,-I’. 

+j,(&G,) $h$J,G3) r,,(G,‘u, G,) x,0$-‘qc, ) 

Straightforward calculation shows that this integral can be 

expressed in the form 

h Lr. (C,G,-‘)j:j,(~G~‘)~.j,jC,6’)~j’ CqGi” (9 
J,J: LZ 5 4 Jfu 

where V is a 2x2 matrix defined by 

-I- 2 (j/j+ I/L)& fGh- tsj(G) f.@- 1 

IIS) 

In the last expression we use the notation explained in 

Appendix B where we develop the group-theoretical basis 

needed for this calculation. Incorporating the weights 

e-j(j+')'S associated with xj(Ua,) in our wave function (13) 

we are led to define the 2x2 matrix 
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,4(G) =z: e 
~-j$,+b&- J’(,r” 

jj 

B (2j+$(Zj’+/J L$, (cl /K (G) (10) 

This allows us to express the quantum-mechanical matrix 

element of xl,2 1 2 3 4 (U U U-lKJS1) as the statistical average 

using the partition function 2 of Eq. (12). 

We are now at the stage in which we can carry out the 

calculation. Using the Monte Carlo procedure for the 

heat-kernel problem, Es. (13, we obtain thermalized 

configurations of the vertex group elements {Gil which can 

be used to calculate the statistical averages of Eq. (16) 

and Eq. (21). We have carried out the Monte Carlo 

simulation (explained in Appendix A) on a 53 lattice using 

p, the icosahedral subgroup of S"(2) .7 The use of this 

120-element subgroup is essential when one encounters such 

complicated expressions as Eq. (20). We found that the 

plaquette-term of Eq. (21) converges quickly to its 

equilibrium limit but the electric field term, Fq. (16), 

exhibits large fluctuations. This made it necessary to 

perform 4000 iterations per value of ii. After spanning 3 by 

steps of 0.1 we performed a minimization calculation for the 

energy thus leading to B(g) which is displayed in Fig. 3 and 

t(g) shown in Fig. 4. 
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Figure 3 shows the correspondence between 8 and 2/g2 in 

two phases of the icosahedral heat-kernel problem. Below 

8c~O.95 we find the strong-coupling phase. The kink at 8, 

is a clear indication of the phase transition of the 

underlying chiral model. In the range 0.95Cf3C2.9 we cover 

0.8r2/g2s1.5 thus leading us into the weak-coupling dcnnain. 

BF=2.9 is the point where the icosahedral subgroup freezes 

out and stops having the same physical features as the 

continuous SU(2) theory (see Appendix A). Hence this 

calculation is not applicable at 2/g2>1.5. 

In Fig. 4 we display the resulting energy alongside 

with the results of the mean-plaquette calculation of the 

previous section. We see that in the strong-coupling region 

both calculations lead to the same results. Turning into 

the weak-coupling region the mean-link method lags behind 

but at 2/g2=l.4 it starts taking over. Since the 

calculation is no longer applicable above 2/g2>1.5 we 

estimated its behaviour by extrapolating fits to our 

numerical calculations of Eq. (16) and (21) fran 2<8<2.8. 

Our conclusion is that the mean-link result follows the 

mean-plaquette one for a wide range of 2/g2. 

4. SUMMARY AND OUTLOOK 

. 

The comparison between the mean-plaquette ansats and 

the mean-link method carried out in this paper came out in 

favor of the mean-plaquette one. Not only is it much easier 
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to calculate with, but its energy turns out to be lower than 

the mean-link one for most of the range over which we can 

compare them. Moreover it does not suffer from a phase 

transition in B therefore we are assured of its confining 

nature for all g2. 

It is nonetheless interesting to look at the mean-link 

ansatz because the latter can be readily generalized to 

include quark fields as dynamical variables in the 

Hamiltonian. Figure 4 shows that the underlying chiral 

model crosses through a phase transition at the point 

9222.5. This value corresponds to the location of the 

cross-over region according to the large order perturbation 

calculation of Kogut and Shigemitsu. 8 Hence it seems that 

the occurrence of the phase transition at this particular 

point is not fortuitous. Nonetheless it is of course an 

artifact of the mean-link method which should not survive in 

an improved analysis. 

The way the mean-link method may be improved was 

proposed in Ref. 5. Operating on $, of Eq. (11) with 

T(4) A(<,e/) Th’) 
Y w 

122 ) 

one arrives at a wave-function which includes correlations 

between different links. Projecting out the gauge-invariant 

component one obtains a much more complicated chiral model. 

This was shown 5 to lead to the correct qualitative behaviour 

for the U(1) theory in 2+1 dimensions where A(9.!2') became a 
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propagator with a mass which vanishes in weak coupling with 

an essential singularity. To repeat the same analytic 

calculation for the SU(2) problem seems to be impossible. 

Therefore one will have to work with a series of A(t%') 

which lead to gradually more complicated calculations as 

larger separations between R and a' are allowed. Including 

such larger separations one may hope to push the phase 

transition point further into the weak-coupling regime so 

that the whole transition region fits into one phase of the 

underlying chiral model. 5 

The mean-plaqette ansatz has the confining nature of 

the 2+1 dimensional theory and has therefore to be modified 

considerably to show the right behaviour in 3+1 dimensions. 

Following the lesson of the 2+1 dimensional analysis‘ one 

may conclude that adding nearest neighbor plaquettes will 

slightly improve the behaviour. We would like to point out 

that one can be more ambitious and study a wave function 

which includes long range correlations in its exponent. Our 

candidate wave function would be 

q = i” wp P L $- /ti up + t 2 h y A+/$ A;; VEf (23) 

The point to be stressed is that this ansatz is amenable to 

numerical calculations following the line of reasoning of 

Section 2. The reason is that the bilinear term in the 

exponent can be rewritten in terms of an auxiliary plaguette 

field $ 
P 

: 
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J&p, e”p \- t 5 Y, A-‘&) 92% + 5 Ji Uf Yf ) - 

- ey =/ tt ;t”“p wi)q1 
P% 

Hence, with the aid of this auxiliary field, J, can be 

written in a form which involves only a single tr Un for 

every plaguette. Equation (15) may then be generalized into 

a form which involves averages of terms like 

tr U p exp(I $ P P tr uP) in 
a distribution of $ goverened by 

the 3-dimensional propagator A -1 
(P&I). +p may be regarded as 

a scalar field which is equivalent to a compound singlet 

structure of the original gauge fields. If the ansatz (24) 

describes correct features of the vacuum then the g2 

dependence of the mass in the propagator should reflect the 

B-function behaviour of the continuum SU(2) theory. 
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APPENDIX A: CHIRAL SU(2) PROBLEM IN 3 DIMENSIONS9 

We study a lattice model which possesses a global 

SU(2)XSU(21 symmetry. With each site i of a cubic lattice 

we associate an element of the SU(2) group G(i). The 

simplest action which has the correct symmetry character is 

given by the nearest-neighbor interaction 

f$ = $ z fi (G-‘(t) Cl;+ )) [A 4) 
+ 

where i refers to the lattice site and _ cl-r are the three 

independent unit vectors. Viewing G as a 2x2 matrix-element 

we realize that Al is defined in terms of the character of 

the fundamental representation. The kernel of the 

corresponding partition function 

may be expanded in terms of all characters of the SU(2) 

group 

ef f xyL(G) = f ‘y I?+, C/9 SC”’ 
jZ0 

(A3) 

where 12j+l is the modified Bessel function of order 2j+l. 

We wish to demonstrate that the heat-kernel action that 

we need for the analysis in Section 3 is a Villain 

approximation to Al. For that purpose we note that the large 

8 behaviour of the Bessel functions 
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I$+, (U p= 
e f- + 
F” 

_ 2jf4 

f (A 41 

leads to 

.t f%,,(c) 
(As-) 

Dropping the overall S dependent factor we are led to the 

heat-kernel action 

A e L = -IT K (G-‘h) Gk+$)) 14 6) 
‘;r 

where 

l<(G)= t?- e - 
1* 

J 
p (2j-t I) x,-(G) CA 7) 

The action Al can be easily studied by means of a 

Monte-Carlo simulation. The situation is different for the 

heat kernel action. First, the evaluation of the sum over 

all representations of SU(2) is of course impossible in 

practice. One must introduce a cutoff on the allowed values 

of the "angular mcanentm" j. For any given value of S we 

can terminate the j series if e -2 tj (j+l) I/B,,le After the 

cutoff is introduced we will have to calculate rather 

complicated expressions for each link. Without further 

approximations we would need extremely large amounts of 

computer time to carry out the computation. Fortunately 
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enough it is well known from Euclidean lattice gauge theory 

simulations that for not too large values of 9 the full 

SU(2) group is extremely well approximated by its 120 

element subgroup P, the symmetry group of the icosaheder. 7 

At some large value of 9 the icosahedral group ceases to 

reproduce SU(2), because the discrete nature of the group 

forces a freezing transition. 

With finite number of group elements the calculation is 

extremely simplified because both the multiplication table 

and the action can be tabulated. In order to .test the 

region where the approximation by the discrete subgroup can 

be trusted we have performed Monte Carlo simulation of z1 
using both the full SU(2) group and the icosahedral 

subgroup. The average action as function of 5 is shown in 

Fig. 5. From this figure it is clear that the freezing 

transition occurs around BF=2.9. Below this point there is 

excellent agreement between the full Su(2) group and its 

discrete icosahedral subgroup. 

On the same figure we display also the average action 

of the heat-kernel problem, A2. This one is calculated by 

using only the icosahedral subgroup. We see that the two 

different actions are very similar for 911.6, well below 5,. 

We trust the calculation for f3<@, as being representative of 

the full SU(2) group. 

The 3-dimensional SU(2) chiral model is expected to 

have a continuous phase transition.1' Our Monte-Carlo 

calculation on a 53 lattice with 1000 iterations per point 
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has shown no hysteresis loop, thus supporting the 

expectation of a continuous phase transition. The fact that 

a phase transition does occur can be seen from Fig. 3 where 

we use statistical averages defined in 22 to establish a 

connection between B and the coupling constant of the 

Hamiltonian of Eq. (1). 

The action A1 had been previously investigated 

numerically by Kogut et al.ll Although both calculations 

indicate the existence of a continuous phase transition we 

find ourselves disagreeing with the detailed functional 

behaviour of <Al> reported by them. 

APPENDIX S: AN SO(2) SUPPLEMENT 

Let us represent the group element G as a 2x2 matrix 

(the fundamental representation) 

G = ~~ 11 + ‘3.~ 

The four nwnbers are subject to the condition 

&G= cp~=- p&=1 

thus establishing the group manifold as the unit sphere in 

four dimensions S3. 

Using the four-dimensional language we note that any 

similarity transformation G+GilGG1 leaves trG invariant and, 

therefore, is equivalent to a rotation of the 3-vector ;; 
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leaving go unchanged. Under such a rotation G itself 

decomposes therefore into a scalar and a vector. Higher 

representations of the group will have higher rank tensor 

components under such similarity transformations. In fact 

the highest rank tensor in the representation j should be of 

order 2j following the simple sum-rule 

1’ 

f (zi,+,j = (‘p,’ 
k=0 

For our purposes it suffices to consider just the 

scalar and vector parts of all representations. The scalar 

part is otherwise known as the character of the 

representation 

?$(G) = t ,a:ky (c) is. 
034) 

It can depend only on the value go and, in fact, has to be a 

polynomial of rank 2j in go. Using the convenient notation 

gO=coscL it is easy to establish that 

XJ /G) = 
& TZj+,)d IN-1 

AhAd 

To find the linear combination of the matrix-elements of the 

j-th representation which behaves like a vector let us take 

+(j) its trace with the matrices J which define the generators 

of SU(2) in the j-th representation: 



r $1 (G) 5,: = I‘$ j?(G) 

h\h 
-+ti 

The vector character is exhibited explicitly by $ on the 

right-hand side. 
'j 

has therefore to be a class-function, 

i.e. a scalar in our terminology. In fact it has to be a 

polynomical of degree Zj-1 in go. 

To establish the general form of P. let us note that 
3 

the Casimir of SU(2) can be written as the transverse part 

of the Laplacian in the four-dimensional space spanned by 

ga: 

Requiring that both expressions (B4) and (B6) are 

eigenfunctions of h with eigenvalue j (j+l) and using the 

constraint (82) we find the differential equations 

~rc$- 1) g-j + 3Je+ - 4jfj3I) ] X. =O 
J 

c p, A$ +5-J- -& + 3- 4jp) J pJ =o 
This establishes that 

'j and 'j are the Gegenbauer 

polynomials Cij(go) and C2 2j-1(go) respectively.12 In fact 

$ = + .-$$$ = @tf)&Zjd - j&2fJ+l)a 

2 &3d 

(3 Id 
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The construction (B6) can be generalized to produce the 

higher rank tensors by using symmetric permutations of the 

generators of the group. However in our SU(2) problem, with 

the particular ansatz for the wave function in terms of 

group characters only, we need only the scalars 
'j and 

vectors i;,.. 
1 
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FIGURE CAPTIONS 

Fig. 1: Ground-state energy for the mean-plaquette ansatz 

(full circles) compared with the result for a 

one-plaquette problem (open circles). 

Fig. 2: Link variables (Uk) and gauge-group variables Gi) 

used in Eq. (17) to (21) . 

Fig. 3: The parameter B of the mean-link ansats which 

minimizes the vacuum energy. 

Fig. 4: Comparison of the ground-state energies of our two 

trial functions. The mean-link data stop at 6,. 

Extrapolating from lower B we expect them to follow 
2 the trend of the mean-plaquette data for lower g . 

Fig. 5: Monte-Carlo evaluation of chiral SU(2) problems in 

3 dimensions. Al is the fundamental- representation 

action of Eq. (A-l) and A2 is the heat-kernel 

action of Eq. (A-6) . Al is calculated for both 

SU(2) and its icosahedral subgroup P exhibiting a 

difference between the two above BF=2.9. 
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